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The flow in a two-dimensional laminar separation bubble is analyzed by means 
of finite-difference solutions to the Navier-Stokes equations for incompressible 
flow. The study was motivated by the need to analyze high-Reynolds-number 
flow fields having viscous regions in which the boundary-layer assumptions are 
questionable. The approach adopted in the present study is to analyze the flow 
in the immediate vicinity of the separation bubble using the Navier-Stokes 
equations. It is assumed that the resulting solutions can then be patched to the 
remainder of the flow field, which is analyzed using boundary-layer theory and 
inviscid-flow analysis. Some of the difficulties associated with patching the 
numerical solutions to  the remainder of the flow field are discussed, and a sug- 
gestion for treating boundary conditions is made which would permit a separation 
bubble to be computed from the Navier-Stokes equations using boundary con- 
ditions from inviscid and boundary-layer solutions without accounting for inter- 
action between individual flow regions. Numerical solutions are presented for 
separation bubbles having Reynolds numbers (based on momentum thickness) 
of the order of 50. In  these numerical solutions, separation was found t o  occur 
without any evidence of the singular behaviour at  separation found in solutions 
to the boundary-layer equations. The numerical solutions indicate that predic- 
tions of separation by boundary-layer theory are not reliable for this range of 
Reynolds number. The accuracy and validity of the numerical solutions are 
briefly examined. Included in this examination are comparisons between the 
Howarth solution of the boundary-layer equations for a linearly retarded free- 
stream velocity and the corresponding numerical solutions of the Navier-Stokes 
equations for various Reynolds numbers. 

1. Introduction 
There are many complicated problems in fluid dynamics for which simplifying 

assumptions in the governing equations of motion are not suitable and, con- 
sequently, these problems can only be approached analytically by solving the 
complete Navier-Stokes equations. This situation and the availability of high- 
speed digital computers have resulted in current widespread interest in finite- 
difference solutions t o  the Navier-Stokes equations. In  principle, the Navier- 
Stokes equations can be solved numerically for flows having arbitrary Reynolds 
numbers; however, most of the numerical studies to date have been confined 
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to moderate (or low to moderate) Reynolds numbers. The difficulty which usually 
arises at higher Reynolds numbers is one of grid resolution. The accuracy of a 
finite-difference solution depends on the scale of the grid spacing relative to the 
scale of the exact solution which is being approximated numerically. TO obtain 
a meaningful solution, the grid spacing must be small enough to resolve the flow 
field adequately. In  most high-Reynolds-number problems, boundary layers or 
other spatial non-uniformities are usually present in the flow field, and the usual 
consequence is that the total number of grid points required to resolve such a 
flow field is prohibitively large from the practical standpoint of computer time 
and storage. This is unfortunate since the vast majority of practical flows involve 
high Reynolds numbers. However, there exists a class of problems in which this 
difficulty can be avoided by solving the Navier-Stokes equations locally and 
patching the solution to the remainder of the flow field, which is analyzed by 
other means such as boundary-layer theory and inviscid-flow analysis. This 
approach is attractive for flows in which the boundary-layer assumptions are 
violated locally, as is true for boundary layers with separation bubbles and some 
strong injection problems. 

The foregoing approach was utilized in the investigation described herein, 
in which numerical solutions were computed for a flow field which includes a 
separation bubble having both laminar separation and laminar reattachment. 
The separation bubble was produced by specifying the external velocity dis- 
tribution which acts on a conventional laminar boundary layer. This specified 
adverse velocity gradient was imposed until the boundary layer separated and, 
at  some point downstream of the separation point, the adverse velocity gradient 
was removed, allowing the separated boundary layer to re-attach. The separation 
bubble is located between the separation and reattachment points. For simplicity, 
the study was limited to two-dimensional incompressible isothermal flow with 
constant fluid properties. 

The present investigation was motivated not only by the potential importance 
of finite-difference solutions to the Navier-Stokes equations as a means of 
analyzing viscous flow problems, but also by an interest in the specific separation 
bubble problem studied here. Separation bubbles of various kinds occur fre- 
quently in practice; for example, the sharp pressure peak near the leading edge 
of a thin airfoil is often accompanied by a separation bubble. This type of bubble 
is sometimes harmless but, under certain conditions which are usually difficult 
to predict, the bubble can grow rapidly and quickly cause the airfoil to stall. 
This ‘leading edge bubble’ differs from the bubble considered here in that re- 
attachment in the former case is usually caused by turbulent transition in the 
separated boundary layer rather than by removal of an adverse velocity gradient 
following separation. Otherwise, the two bubbles are identical, and the present 
analysis can be extended to treat turbulent reattachment by incorporating a 
suitable model for the turbulent transport processes. Furthermore, there is some 
evidence that, under certain conditions, the flow around practical airfoils in- 
volves a low-Reynolds-number completely laminar separated region for which 
the present analysis applies more directly. 



Numerical study of laminar separation bubbles 715 

2. The separation bubble problem 
Notivation for using the Navier-Stokes equations 

The present study can be described as an analysis of a flow of boundary-layer 
type using the Navier-Stokes equations. The flow resembles a boundary layer in 
the sense that viscous effects are confined to a thin layer of fluid adjacent to a 
surface in motion relative to a free stream which is regarded as inviscid. However, 
the viscous layer is not a boundary layer in the usual sense because, in the 
problem considered, the boundary-layer equations do not properly describe the 
separated portion of the viscous layer. The behaviour of solutions to the boundary- 
layer equations near a separation point has been a topic of investigation for some 
time, and a lucid review of the subject has been given recently by Brown & 
Stewartson (1969). There is considerable evidence that for two-dimensional in- 
compressible flow with a prescribed pressure distribution, the boundary-layer 
equations possess a singularity at the point of separation. Evidence of this 
singularity is provided by series expansion solutions such as that of Howarth 
(1938) which fails to converge near the separation point. Further evidence of 
the singularity is the repeated failure of numerical integration techniques to 
pass through a separation point when the external pressure distribution is 
specified. It is possible, however, for a solution to be regular at separation; in 
fact, Catherall & Mangler (1966) have numerically integrated the boundary- 
layer equations past a separation point without encountering singular behaviour. 
Their procedure was to stop specifying the external pressure distribution at  an 
appropriate point upstream of separation; instead, they required the displace- 
ment thickness to assume a non-singular form. The unknown pressure distribu- 
tion was then calculated as a part of the numerical integration procedure. Using 
this approach, they were able to integrate past a separation point into a region of 
reversed flow, and even through a point of reattachment. These developments 
have led to the hypothesis by some that the singularity in the boundary-layer 
equations results from specifying the external pressure distribution from an 
inviscid solution which is prescribed as though there were no separation; whereas, 
in practice, the external pressure distribution is locally altered near separation 
in a manner which allows the boundary-layer solution to be regular at  separation. 
Although this may be true in some sense, or a t  least a useful approximation, it 
is a hypothesis and is not necessarily valid since the boundary-layer equations 
can be singular at separation even though the Navier-Stokes equations are 
regular (Dean 1950). There is another more fundamental reason for questioning 
the validity of the boundary-layer equations near a separation point, since down- 
stream of separation the occurrence of reversed flow implies on physical grounds 
that disturbances are carried in the upstream direction. Thus, the solution a t  a 
given point in the separated flow would be expected to depend on some down- 
stream condition. This behaviour is completely consistent with the elliptic 
nature of the Navier-Stokes equations, but it is difficult to reconcile with a, 
boundary-layer solution which is obtained by integrating a parabolic equation 
in the direction of the free stream. The foregoing may have some bearing on the 
slight instability which was encountered after separation by Catherall & Mangler 



716 W. 12. Briley 

(1966), who found that downstream of separation their iterative integration 
procedure would not converge to within the same tolerance as upstream of 
separation. Catherall & Mangler attributed this slight instability to a probable 
lack of uniqueness in the solutions due to the absence of downstream boundary 
conditions in their method of solution. All of the above considerations are 
accepted here as sufficient motivation for using the Navier-Stokes equations 
in the present study of separation bubbles. 

Y=Y, 

('2) if, < given by 
Howarth boundary- 
layer solution 

\ 

Mathematical formulation 

In  the mathematical formulation of the separation bubble problem, the viewpoint 
which has been adopted is that, for the higher Reynolds numbers of interest, a 
numerical solution of the Navier-Stokes equations which takes into account the 
entire flow field (including both the inviscid and boundary-layer regions) is 

Navier-Stokes equations are solved in this domain 
subject to the boundary conditions (1) -(4) 

LX, u Dividing streamline 

Reattachment point 

y = O t / / /  . . . . . . . . . . . . . . . . . . . . . . .  

FIGURE 1. Schematic of solution domain for separation bubble. 

beyond the capabilities of available computers, as set forth in $1. Accordingly, 
the domain of solution is limited to the immediate vicinity of the separation 
bubble. The remainder of the flow field is to be analyzed by other means and 
patched to the Navier-Stokes solutions by means of suitable boundary coii- 
ditions and patching criteria. The domain of solution is represented schematically 
in figure 1. The governing Navier-Stokes equations are written in terms of 
vorticity and stream function. Using Cartesian co-ordinates and allowing for 
time dependence, the equations to be solved are 

u = a@lay, = - a$px. (3) 

I n  (1)-( 3), < is the vorticity, $ is the stream function, x is the streamwise co- 
ordinate, y is the transverse co-ordinate, u and v are the velocity components 
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in the streamwise and transverse directions, respectively, v is the kinematic 
viscosity, and t is time. It is noted that, although the present study has been 
restricted to flow past a plane wall, it is likely that the numerical method can 
be modified to include the effects of wall curvature by expressing the governing 
equations in normal co-ordinates. Equations (1)-(3) are to be solved by pre- 
scribing a suitable set of boundary and initial conditions and stepping the 
solution out in time until the solution no longer varies significantly with time. 
Thus, the solution for steady flow is obtained as the asymptotic solution for 
large time of an unsteady flow. Since the asymptotic steady solution is the only 
one of interest in this study, it may seem computationally inefficient to com- 
pute the transient solution instead of solving the equations for steady flow 
directly. This argument has some merit, especially for low-Reynolds-number 
flows, and many investigators have chosen to attack the steady-state problem 
directly. However, the time-dependent approach has been selected for three 
reasons. First, there are a number of problems of interest which are inherently 
time dependent; for example, the effect of free-stream oscillations on a separated 
flow. Such problems are of interest and can be studied using the present method 
without making extensive modifications. Secondly, solutions to the steady-flow 
equations are normally obtained by iterative procedures in which one iteration 
corresponds roughly to a single time step in terms of computational effort. Thus, 
the efficiency of the method depends on the rate of convergence of the iterative 
procedure. As the Reynolds number becomes larger, the iterative procedures for 
solving the steady-state problem sometimes convergevery slowly, or even diverge, 
so that for high-Reynolds-number flows the difference in efficiency between a 
steady-state iterative procedure and a transient approach may not exist. Finally, 
physical instability associated with eventual turbulent transition is easier to 
distinguish in the time-dependent approach. 

It remains to describe the boundary and initial conditions which complete 
the mathematical formulation of the problem. Although the complete Navier- 
Stokes equations are being solved without neglecting or simplifying any terms, 
the specification of boundary conditions is an equally important part of the 
problem. In  this connexion, it is important to realize that there are certain 
idealizations or approximations inherent in the mathematical model. To 
formulate an incompressible external flow problem, it is desirable to specify 
the boundary conditions at  the outermost boundaries of the fluid (usually a t  
inh i ty)  since the equations are elliptic in the space variables. Although this 
can be accomplished for many low-Reynolds-number flows by means of suitable 
co-ordinate transformations, boundary conditions were prescribed in a sub- 
domain of the flow field in the present study to help alleviate the problem of 
grid resolution at  high Reynolds number. It is therefore emphasized that the 
solutions which are presented here can be valid as flow fields only to the extent 
that the boundary conditions which follow are valid and the solutions correctly 
patched to the remainder of the flow field. As shown in figure 1, boundary con- 
ditions are specified on (1) the impermeable wall, (2) the upstream boundary, 
(3) the outer-flow boundary, and (4) the downstream boundary. The standard 
no-slip conditions are used a t  the solid wall. At the upstream boundary, the 
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vorticity and stream function are prescribed from a known solution of the 
boundary-layer equations. The analysis assumes that the approach boundary is 
far enough upstream of the separation point to be unaffected by the upstream 
influence of separation. The boundary-layer solution used here for convenience 
is that of Howarth (1938) for a linearly retarded free-stream velocity given by 

Although, in principle, any arbitrary approach boundary layer can be used, 
Howarth’s solution has the advantage that it is easily evaluated and the approxi- 
mate location of the separation point is available. In  general, however, the 
inflow boundary layer would be obtained from a numerical solution to the 
laminar boundary-layer equations in the case of an arbitrary pressure distribu- 
tion. The location of the outer-flow boundary is somewhat arbitrary and was 
chosen to be just outside the region of anticipated boundary-layer growth. For 
example, the present computations were made by locating the outer-flow 
boundary at a distance approximately twice that of the Howarth boundary- 
layer thickness at  separation. Subsequent examination of the computed solutions 
revealed that this was sufficient to contain the growth experienced by the 
boundary layer up to the downstream boundary. If the outer-flow boundary is 
located too close to the wall, this will be obvious from the computed solution, 
and the solution must then be recomputed using a new outer boundary. At 
the outer-flow boundary, the flow is required to be irrotational by setting the 
vorticity equal to zero. In  general, the u-component of velocity can be obtained 
from an inviscid solution; from a numerical viewpoint, an arbitrary distribution 
of u can be specified. The procedure followed here to produce a separation bubble 
was to continue to retard the free stream in accordance with (4) from the up- 
stream boundary to a point slightly downstream of the expected separation 
point, causing the boundary layer to separate; thereafter a constant free-stream 
velocity is prescribed. This reverses the growth of the separated region and 
eventually causes reattachment to take place, forming the separation bubble. 
(Note that with these boundary conditions, the fluid is free to enter and exit 
through the outer-flow boundary.) The fluid then exits through the downstream 
boundary, where it is assumed that a fully rehabilitated boundary layer exists. 
The downstream boundary conditions are given by 

These conditions are boundary-layer approximations, as can be seen from the 
Navier-Stokes equations written in terms of vorticity and stream function, (1)  
and (2). The terms v82$Jax2 in (1) and a2@/ax2 in (2) both vanish to order Re-1 
when the boundary-layer approximations are made. All of the required boundary 
conditions have now been specified, and were chosen to permit the numerical 
solutions to be patched to boundary-layer and inviscid irrotational flow solutions 
for the remainder of the flow field. Further consideration will be given to boundary 
conditions in 5 4. 
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3. The method of solution 
Preliminary remarks 

The computational method used here is based on an alternating-direction-implicit 
(ADI) procedure for the vorticity equation. Related procedures have been used 
by Son & Hanratty (1969), Aziz & Hellums (1967) and Pearson (1965). One 
advantage of the AD1 procedure is that it permits the use of centred difference 
approximations for the convective terms and, consequently, a truncation error 
of higher order than that which results from the one-sided difference approxima- 
tions used to stabilize some explicit procedures. The stream function at the new 
time level is obtained from a finite-difference representation of (2), which is 
simply Poisson's equation with vorticity as the forcing function. There are a 
number of standard procedures available for solving this equation. The method 
used most frequently in previous numerical studies of the Navier-Stokes equa- 
tions is that of successive over-relaxation (SOR). The AD1 method of Peaceman & 
Rachford (1955) for elliptic equations was used here, however, as it has an 
important advantage over SOR. As the mesh is refined, SOR requires a rapidly 
increasing number of iterations for convergence; whereas, the number of itera- 
tions increases only slightly with ADI. For a model problem, Birkoff, Varga & 
Young (1962) have performed experiments which indicate that for a 40 by 40 
grid, the AD1 method with a suitable number of iteration parameters is about 
4 times faster than SOR with optimal relaxation parameter. Since solving the 
stream-function equation consumed about 75 yo of the total computer time used 
by the present method, the use of AD1 results is a marked improvement in 
computational eEciency; moreover, the difference in efficiency increases as the 
grid is refined. 

Computational scheme 

The procedure for solving (1) through (3) is to advance the vorticity through a time 
step using a finite-difference representation of (1). The vorticity field then serves 
as a forcing function in (2), which is solved for the stream function. The non- 
linear coefficients, u and v, in the vorticity equation are computed from (3). 
The scheme chosen to solve the vorticity equation is an alternating-direction- 
implicit (ADI) method for parabolic equations based on that of Peaceman & 
Rachford (1955). The difference equations are given below for a solution domain 
which has been partitioned by equally spaced vertical and equally spaced 
horizontal lines. The notation, &,$, expresses #($Ax, jAy,  nAt) for any quantity $ 
which is defined at  the grid points. Although this notation implies that At is a 
constant independent of the time step index, n, a variable time step will be 
introduced. The AD1 method divides the time step into two equal parts. The 
following equation approximates (1) for the first half time step: 
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The equation for the second half step is 

The application of (6a) and (6b) at each grid point, together with appropriate 
boundary conditions, yields sets of simultaneous equations, each set having a 
tri-diagonal matrix. These equations are easily solved by a procedure based on 
Gaussian elimination (see Forsythe & Wasow 1960). The velocity components 
were computed from the stream function using standard three-point central dif- 
ference formulas, unless otherwise noted. 

To compute the solution of (2) by the AD1 method of Peaceman & Rachford 
(1955), the iteration is performed first implicitly by rows and then by columns 
using the following difference equations: 

where Q is the iteration index, and for each q, pp is a positive parameter chosen 
to  accelerate the convergence of the method. Generally, nz parameters are chosen 
and used in a cyclic manner. The parameters were computed from the Wachpress 
formula given by Birkhoff et al. (1962), using eigenvalues from the matrix repre- 
senting - (Ax) (Ay) a2$/8y2; four parameters were used. 

The solution of (6) and (7) requires boundary conditions which are discussed 
below. For (7a)  and ( 7 b ) ,  values of $ are known along the upstream boundary. 
In  addition, $ is zero along the wall. Along the outer-flow boundary, the normal 
derivative of + is prescribed and represented by the three-point central dif- 
ference formula. The downstream condition for $in ( 5 )  reduces ( 2 )  to an ordinary 
differential equation for $ along the downstream boundary. The following 
implicit difference equation is used to update $ along this boundary each time a 
new [-distribution becomes available: 

where i = M is the downstream boundary. Boundary conditions for (8) are 
applied at the waI1 and free stream as described above. 

For (6a) and (6b), values of vorticity are prescribed along the upstream and 
outer-flow boundaries. The downstream condition for in ( 5 )  is approximated 
by the three-point central difference formula. The remaining boundary condition 
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is that of no-slip, and it requires special consideration. At the wall, the vorticity 
is given by 

L u  = ~ , 
a2+ aY2 I w 

(9) 

and is evaluated using a difference formula which implicitly satisfies the no-slip 
condition. One such commonly used formula is 

in which the wall is located at  j = 1 (see figure 2).  Equation (10) can be derived 
by differentiating a Lagrangian polynomial for interpolating the stream function 
between nearby points and evaluating at  the wall. To derive (lo), a cubic is 

6 (i, 0) 

FIGURE 2. Notation for grid points near the wall. 

passed through $ at the points (i, l), (i, 2), (i, 3) and the imaginary point (i, 0) 
in figure 2. A formula for E,w is obtained by differentiating this cubic twice with 
respect to y and evaluating at  the wall. A second formula, expressing the no-slip 
condition, is obtained by differentiating the cubic once, evaluating at  the wall, 
and equating to zero. Equation (10) is then obtained by eliminating $i,o from 
these two formulas. Equation (10) thus results from approximating $ near the 
wall by a cubic polynomial rather than the customary quadratic which leads to 
the three-point central difference formulas. It will now be shown that the use 
of (10) requires a special formula for u at the points (i, 2) adjacent to the wall 
because of an inconsistency which has previously escaped notice. If the cubic 
polynomial mentioned above is differentiated once and evaluated at  the point 
(i, 2), a formula for u ~ , ~  is obtained. If $i,-, is eliminated from this formula using 
the same no-slip formula used to derive (lo), the result is 

46 
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Note that (1 1) differs from the standard three-point central difference formula 

(12) 
for ui, which is 

1 
Ui,2 = ~ C - $i, 1 -I- $i, 31. 

It is therefore concluded that at  the row of points adjacent to the wall, (12) is 
inconsistent with the treatment of vorticity boundary conditions at the wall, 
and (11) should be used to represent u at these points. This conclusion is re- 
inforced by numerical experiments made by the author, in which the use of (12), 
in place of (1 l) ,  resulted in numerical instabiIity at high Reynolds number. 

Although the foregoing treatment is complete and approximates the no-slip 
condition to second order, a higher-order approximation was used for the solu- 
tions reported here. The procedure described above for deriving difference 
equations from interpolating polynomials was used to obtain difference formulas 
from the fourth-order polynomial for $ at the points (i,O-4) in figure 2. The 
derivation produces the following new formulas for the wall vorticity and for 
a2$/ay2 and u at the two rows of points adjacent to the wall: 

W Y )  

Equations (13) to (17) all imply the no-slip condition, and their use provides 
a higher-order coupling of the vorticity and stream-function equations at the 
wall. Equations (14) and (15) are used in (7a) and (7b), thereby introducing a 
coefficient which is not tri-diagonal into the matrix of implicit coefficients; how- 
ever, this coefficient is easily handled by a simple modification of the Gaussian 
elimination scheme which solves the system of implicit equations. Although the 
higher-order formulas produce little change in the wall vorticity from that 
computed using (10) and ( l l ) ,  their use permits larger time steps and thereby 
reduces the overall computer time. This saving is somewhat offset by the addi- 
tional programming effort required. 

When utilizing the formulas for wall vorticity, a problem arises with an 
implicit method; boundary values of vorticity at  a new time level are needed 
to solve the vorticity equation before the new stream-function distribution is 
available for calculating them. To avoid lagging the wall vorticity by one time 
step, a process of iteration over the time step is used to obtain the correct implicit 
boundary values for vorticity. An obvious disadvantage of such an iteration 
process is that if more than a few iterations are required for convergence, then 
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the method becomes very inefficient. An effort was made to overcome this dis- 
advantage by choosing the time step so that convergence requires a small 
number of iterations, say 2 to 3. This procedure also serves as a means for scaling 
a variable time step to the solution being computed. After the time step is 
completed, the size of the time step for the next cycle is increased or decreased 
by a factor of rAt if the number of iterations fell outside of the preset limits. The 
solution of (6a) and (6b) for vorticity requires values for the non-linear co- 
efficients, u ~ , ~  and vi, j. These can be evaluated a t  time level n, extrapolated from 
previous time levels, or re-evaluated during each time iteration cycle, thereby 
converging along with the wall vorticity. The latter procedure slows the time 
iteration process slightly, and the procedure used here was to evaluate the non- 
linear coefficients at  the (n++) level by extrapolating from levels n and (n- 1). 

A summary is now given of the algorithm which was used to advance the 
dependent variables from the n to the (n + 1) time level. 

(i) Obtain boundary values for fin+1, tn+' or their derivatives. These have been 
given in advance except for En+' at the wall, which is initially approximated by 
extrapolation of 6;;d and Non-linear coefficients @:*and vz;i are computed 
by a similar extrapolation. Extrapolation is also used to obtain initial approxima- 
tions for $n+l. These are later used as starting values in the iterative scheme for 
solving the stream-function equation. 

(ii) Solve (6a) and (6b) to obtain 
(iii) Solve for $n+1 using the iterative scheme given by (7 a )  and ( 7  b). Modified 

formulas for a2$/ayz near the wall are given by (14) and (15). 
(iv) Calculate new estimates for tn+l at the wall using (13). 
(v) Return to step (ii) and repeat this procedure until the values of com- 

puted in step (iv) converge. 
(vi) Compute um+l and from $nf1 using central differences. The modified 

formulas, (16) and (17), should be used near the wall. 
(vii) If fewer than Qmin iterations were required for step (v) to converge, At 

is increased by a factor rAt for the following time step. If more than Qmax iterations 
were required, At is decreased by the same factor. Qmin and Q,,, were usually 
taken as 2 and 3, respectively. The overall procedure is not sensitive to rAt; 
values of 1.1 and 1.25 for rAt have been used. 

The above algorithm requires convergence criteria for use in steps (iii) and (v). 
The maximum normalized change in wall vorticity was used as the test quantity 
in both cases. The cut-off criteria were chosen to ensure that the values of wall 
vorticity were computed accurately enough to reflect the change in wall vorticity 
during a time step. The solution was accepted as steady when the maximum 
normalized change in wall vorticity during a time step fell within a prescribed 
tolerance, but this criterion was confirmed in each case by a subsequent examina- 
tion of the transient behaviour of the wall vorticity. Initial conditions for the 
stream function were obtained by scaling a velocity profile shape, usually that 
at the upstream boundary, to the local free-stream velocity and performing 
numerical integration. The vorticity and new values for velocity were then com- 
puted from the stream function. Further details of the computational procedure 
are avafl-able (Briley 1970). 

46-2 
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4. Discussion of results 
Numerical solutions for separation bubbles 

In this section, example numerical solutions are presented for flows which contain 
a separation bubble. A summary of the pertinent parameters for all of the 
numerical solutions presented herein is given in table 1. Although the numerical 
calculations were carried out in physical units, the results have been made 
dimensionless in accordance with the nomenclature of Howarth (1938) to facilitate 
comparison. To compute the wall-shearing stress, the velocity gradient at the 
wall is needed and this is easily obtained from the vorticity, since tW = (au/ay),. 

Solu- 
tion 

1 
2 
3 
4 
5 
6 
7 
8 
9 

V b0 
(ft2/sec) (ft/sec) 

0.0016 100 
0.0016 100 
0-0016 100 
0.0016 100 
0.000016 100 
0.00016 100 
0.0016 100 
0.016 100 
0.16 100 

b, 

300 
300 
300 
300 
300 
300 
300 
300 
300 

2 1  

0.0167 
0,0167 
0.0167 
0.0167 
0.00833 
0.00833 
0.00833 
0.00833 
0.00833 

(ft) 
2 2  

0.163 
0.163 
0.163 
0.163 
0.025 
0.025 
0.025 
0.025 
0.025 

(ft) 
Ye 

0-0125 
0.0125 
0.0125 
0.0125 
0.0008 
0.0025 
0.008 
0.025 
0.08 

(ft) 

At 
(range 1 

sec 

2.5-8.6 
2.5-8.6 
2.5-8.0 
2.5-6.0 
130-3.8 
1.0-3.2 
1.0-3.5 
1-0-3.2 
1.0-5.0 

TABLE 1. Summary of computed solutions 

2 2 - 3 4  

Ax 

35 
35 
35 
35 

8 
8 
8 
8 
8 

Y e  - 

AY 
30 
30 
30 
30 
30 
30 
30 
30 
30 

% 
prescribed 

Near separation 
Near separation 
Separation bubble 
Separation bubble 
U, = bo-b,x 
U, = bo-blx 
w,, = bo-blx 
U ,  = b,-b,x 
U ,  = bo-b , z  

The displacement thickness is defined at  any x-location by 

where the subscript e denotes a quantity at the outer-flow boundary. The follow- 
ing simple formula for 6" can be derived by performing the integration (while 
holding II: constant) : 

(19) 
ge 
Ue 

Ye--- a* = 

Equation (19) was used to calculate the displacement thickness. The momentum 
thickness is defined by 

e = 1" 2 (1 - t) dy ,  
0 Ue 

and was computed from the derived veIocity field by numerical quadrature of (20) 
using the trapezoidal rule. 

Solutions are presented in figures 3-5 for four free-stream velocity distributions, 
two of which produce separation and reattachment. The boundary conditions 
for these four solutions are identical except for the imposed free-stream velocity. 
The distributions of shearing stress along the wall are given in figure 3 along with 
the free-stream velocity distributions, which were varied by changing the 
Howarth linearly retarded free-stream velocity (continued from the upstream 
boundary) a t  selected streamwise locations to a constant velocity. Solutions 3 
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and 4 contain separation bubbles, which appear as negative wall shearing stress 
in figure 3. Separation in these solutions occurred without any evidence of the 
singular behaviour found in solutions of the boundary-layer equations when the 

Howarth solution 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Distance along wall, z* = b,z/b,  

FIGURE 3. Wall shearing stress computed for different free-stream velocity distributions. 
Computed Navier-Stokes solutions: 0, 1 ; 0, 2; 0, 3; A, 4. 

Howarth separation point rv 

1 d o y a r t h  solution 

0.95 2 
0.90 8 2 
0.85 5 

0.75 ' 5 
Q .a 

0.80 8 ,o 

" 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Distance along wall, x* = b,@, 
FIGURE 4. Displacement thickness computed for different free-stream velocity distributions. 

Computed Navier-Stokes solutions: 0, 1; 0, 2; 0, 3; A, 4. 

free-stream velocity is prescribed. In  each of the four solutions, the Reynolds 
number, Ree, increases from about 20 at the upstream boundary to around 70 
at the downstream boundary. It is noted that, although this range of Reynolds 
number is somewhat low for making boundary-layer approximations, the 
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Reynolds number is high to expect a boundary layer undergoing separation to 
remain laminar and, in fact, there were some small disturbances present in the 
initial distributions of vorticity which oscillated through several cycles before 
being damped out in the transient approach to steady state. The oscillations 
had a period on the order of 50At, so that their temporal behaviour was resolved 
adequately in the calculations. The implication of these weakly damped oscilla- 
tions is that, although the solutions are stable to disturbances in the flow field, 
the point of instability is nearby. Attempts were made to calculate separated 
solutions similar to the foregoing but with Re, higher by a factor of 3; however, 

5.0 

I" 

A a A  
A A  - A 

A A - 
A A U O o o  

FIGURE 5. Shape factor computed for different free-stream velocity distributions. Computed 
Navier-Stokes solutions: 0, 1 ;  0, 2;  0, 3; a, 4. 

5 1.0 

these attempts failed due to instability which is believed to be of physical origin. 
The behaviour of these attempted solutions, together with those in figures 3-5, 
with regard to critical Reynolds number for the amplification of disturbances is 
in reasonable agreement with the stability analysis of Schlichting & Ulrich ( 1942). 
The streamwise distribution of displacement thickness is shown in figure 4, and 
the characteristic rapid increase in the displacement thickness in the region of 
separation is evident in solutions 3 and 4, which undergo both separation and 
reattachment. A similar increase in the shape factor near separation can be seen 
in figure 5,  the maximum value of shape factor being sIightly over 5. Finally, with 
reference to figure 3, it  is noted that the Howarth solution indicates that separa- 
tion should occur for all four solutions, whereas two of the Navier-Stokes solutions 
separated downstream of the Howarth separation point and the other two did 
not separate at all. This demonstrates that for these Reynolds numbers, pre- 
dictions of separation by boundary-layer theory cannot be relied upon. It is not 
clear whether this conclusion remains valid for higher Reynolds numbers. It 
does appear that the Reynolds number range of solutions 1-4 is within the lower 

- 
- 

I I ' ' I ' I I ' I I ' 1  ' 
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0.0375 
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0.0 

Outer-flow boundary 7 

23.5 
18.8 

14.1 
9.4 

4.7 
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X* =0,05, 
upstream 
boundary 
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downstream 
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FIGURE 6. Contours of dimensionless stream function, $bi/bo vt, 
for separation bubble; solution 4. 

Outer-flow boundary 7 

'I 1 0.95 
0.855 I I 

upstream downstream 
boundary boundary 

FIGURE 7. Contours of dimensionless velocity, ulb,, 
for separation bubble; solution 4. 
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range of validity of the boundary-layer assumptions. This latter judgement is 
based on comparisons between the Howarth solution and the corresponding 
Navier-Stokes solutions for various Reynolds number; these comparisons are 
discussed subsequently. 

Solution 4, which contains the larger separation bubble, is now considered in 
further detail. Contour plots of the stream function, u-component of velocity, 
and vorticity are given in figures 6-8 for this solution. The vertical scale in 
these contour plots has been amplified for clarity and the y co-ordinate has been 
made non-dimensional in the same manner as the x co-ordinate. The velocity 

Upstream boundary 
(from Howarth 

solution) 

Downstrean 
boundary 

0.05 0:15 0.2125 0:30 0:488 

Streamwise location, z* = &lz,&Q 

FIGURE 9. Velocity profiles at selected streamwise locations for 
separation bubble; solution 4. 

profiles at selected streamwise locations for solution 4 are given in figure 9. The 
maximum reverse-flow velocity is about 2 yo of the local free-stream value. The 
shape of the vorticity profiles downstream of the separation bubble is worthy 
of comment, and figure 10 shows the distribution of vorticity normal to the wall 
and also the u-velocity profile at  x* = 0.4 for solution 4. It can be seen that, in 
the direction normal to the wall, the vorticity at  first decreases from its wall 
value and then rises to a maximum before falling to zero far from the wall. This 
distribution indicates that diffusion has not had a sufficient distance over which 
t o  smooth the new vorticity being generated a t  the wall with vorticity being 
convected and diffused from further upstream, and the result is an additional 
inflexion point in the vorticity profile. Qualitatively, this happens whenever 
a previously retarded boundary layer is accelerated, and a similar behaviour can 
be discerned in the unseparated numerical solutions, but it is more noticeable in 
the solutions which contain a separation bubble. 

It has been noted that separation occurred in the present solutions without 
evidence of the singular behaviour found in solutions to the boundary-layer 
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equations when the external velocity distribution is prescribed. Singular be- 
haviour is absent from the present solutions because the complete Navier-Stokes 
equations were solved, including the elliptic terms normally associated with 
upstream influence, which are neglected in the boundary-layer equations. The 
term ‘upstream influence’ describes a difference in character of solutions to 
elliptic and parabolic equations, The boundary-layer equations, being parabolic, 

Vorticity, [valb, b: 

0.1 0.2 0.3 0.4 0.5 
I I I I I 1 I I I 1 

0 I I I 

0.6 0.8 1 .o 
I I I I \  I 

Velocity, u/u, 

FIGURE 10. Vorticity and velocity profiles at z* = 0.4 from solution 4. 

are solved by integration in the downstream direction from a given initial con- 
dition. Thus, a perturbation in a boundary condition (such as free-stream velocity) 
downstream of a given point cannot affect the solution upstream of that point. 
The Navier-Stokes equations, however, are elliptic in the spatial variables, and 
since solutions to elliptic equations must satisfy all boundary conditions simul- 
taneously, a perturbation in a boundary condition downstream of a given point 
will necessarily affect the solution upstream of that point. The occurrence of 
upstream influence in the present numerical solutions can readily be seen in 
figure 3 by noting that, upstream of the point x* = 0.125, the shearing stress 
distributions for the four solutions differ noticeably from one another despite the 
fact that all have identical boundary conditions upstream of that point. The 
upstream influence occurs to a greater extent in the two solutions with separation 
than in those without. Upstream influence is completely absent from conventional 
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boundary-layer solutions and reflects a basic difference between solutions to the 
boundary-layer and Navier-Stokes equations. 

Some comparisons with boundary-layer theory 

Since it is important to delineate points of departure of boundary-layer theory 
from the present Navier-Stokes solutions, some of the differences are considered 
in detail. The most significant difference concerns the application of free-stream 
boundary conditions. In  a boundary-layer solution, the boundary condition on 
free-stream velocity is satisfied asymptotically at an infinite distance normal to 
the wall whereas, in the present Navier-Stokes solutions, zero vorticity was 
prescribed in addition to free-stream velocity at  a fixed distance from the wall. 
Consequently, the Navier-Stokes solutions possess a region adjacent to the 
outer-flow boundary in which the vorticity remains zero. The vorticity differs 
from zero only near the wall, where the flow is influenced by the diffusion and 
convection of vorticity generated at  the wall. It can be seen from the definition 
of vorticity, 

that the specification of zero vorticity a t  the outer-flow boundary represents a 
departure from boundary-layer theory, in which the term, - av/az, in (21) is 
neglected. In  terms of stream function, - av/ax is an elliptic term, az$/axz. The 
effect on the Navier-Stokes solutions of including this term can be seen by 
eliminating v between (21) and the continuity equation, 

au av 
ax ay 
-+- = 0, 

through cross-differentiation, giving 

In the irrotational portion of the flow field, the left-hand side of (23) is zero, 
and it can then be seen from (23) that if the prescribed free-stream velocity 
distribution is such that the elliptic term, a2u/ax2, is not zero, as assumed in 
boundary-layer theory, then u will have y-dependence in this region. This 
behaviour was found to occur in the present numericaI solutions and appears 
in figure 9 as a 1.5 % overshoot of the free-stream velocity in the velocity profile 
at  x* = 0.2125. The overshoot is caused by prescribing, as outer-flow boundary 
conditions, zero vorticity and an external velocity distribution for which Pue/8z2 
is non-zero. In  view of the preceding discussion, it can be seen that, with the 
present treatment of boundary conditions, a direct comparison between a 
Navier-Stokes and the corresponding boundary-layer solution having the same 
free-stream velocity distribution cannot be made unless that velocity distribu- 
tion is such that a2uelax2 = 0. 

With the present treatment of outer-flow boundary conditions, the location of 
the outer-flow boundary affects the numerical solution when a2u,/ax2 differs 
from zero, because of the y-dependence in u that this implies. An example of the 
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effect on wall shear of moving the outer-flow boundary is shown in figure 11, 
where solution 2, presented earlier in figure 3, has been recomputed with addi- 
tional grid points added to move the outer-flow boundary outward to $ of its 
original distance from the wall. The difference between the two solutions in 
figure 11 is due to a slight ambiguity in locating the outer-flow boundary, which 
arises because the vorticity was prescribed as zero along the outer-flow boundary. 
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This was done, as mentioned previously, so that the numerical solutioiis would 
have a region of zero vorticity near the outer-flow boundary which would permit 
them to be patched to an irrotational, inviscid free-stream solution. In  per- 
forming a complete matching, both the u and v velocity components from the 
inviscid and viscous solutions should agree along the outer-flow boundary; how- 
ever, only one of the u and v velocity components can be specified in addition to 
vorticity as boundary conditions for numerical solution of the Navier-Stokes 
equations. In  the present study, it was assumed that along the outer-flow 
boundary u was available from an inviscid solution. In  the resulting Navier- 
Stokes solution, the v-component of velocity along the outer-flow boundary 
generally will not agree with that from the inviscid solution used to prescribe 
the distribution of u along that boundary, and the mismatch in v is an indica- 
tion of interaction between the inviscid and viscous solutions which has been 
neglected. To account for the interaction, it would be necessary to successively 
recompute the inviscid and Navier-Stokes solutions, allowing in some manner 
for the influence of one upon the other, until the two solutions no longer change 
significantly. For instance, having computed a Navier-Stokes solution with u 
specified along the outer-flow boundary from an inviscid solution, the location 
of any streamline lying completely within the irrotational portion of the Navier- 
Stokes solution could serve as the boundary condition for a new inviscid solution, 
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which in turn would provide a new distribution of u at the outer-flow boundary 
€or a new Navier-Stokes solution. In this manner, the precise location of the 
outer-flow boundary would become irrelevant as the patching is completed. A 
patching procedure would also be necessary at  the upstream and downstream 
boundaries, where the Navier-Stokes solution is joined with an inviscid solution 
near the outer-flow boundary and with a boundary-layer solution near the wall. 

Specific procedures to accomplish a complete patching of the inviscid and 
viscous solutions were not examined in detail, since the present aim was simply 
to compute solutions to the Navier-Stokes equations which could be used in 
such a procedure. It is recognized, however, that a complete patching of inviscid, 
boundary-layer, and Navier-Stokes solutions would be tedious, and thus i t  
would be desirable to be able to compute a Navier-Stokes solution which would 
be a good approximation to a separation bubble flow using outer-flow boundary 
conditions which are specified from an inviscid solution without accounting for 
interaction between the two solutions. To accomplish this, the solution should 
not depend significantly on the location of the outer-flow boundary. The present 
outer-flow boundary conditions may satisfy thisrequirement for higher-Reynolds- 
number separation bubbles (which would require a turbulent viscosity model), 
since the dependency on outer-flow boundary location is associated with terms 
such as (1/Re) a2u,/ax2. An alternative treatment would be to set aulay = 0 at the 
outer-flow boundary instead of prescribing zero vorticity ; in other words, the 
boundary-layer approximation to zero vorticity would be used. In  support of this 
formulation of boundary conditions it could be argued that, since boundary- 
layer approximations were being made on all boundaries, the key assumption 
would be that the elliptic effects associated with separation are local and confined 
to the domain of solution. This argument has merit provided the bubble thickness 
remains of order Re-4, where Re, the Reynolds number based on streamwise 
length, is large in some sense. The foregoing suggestion for formulating the 
problem represents an extension of boundary-layer theory which, if successfuI, 
would be applicable to thin separating and reattaching shear layers. 

Validity and accuracy of the results 

When finite-difference methods are used to solve equations of the present com- 
plexity, i t  is essential to examine the results in some way for validity and 
accuracy. Several checks were made in the present study and these are now 
discussed. To provide a comparison between the numerical solutions to the 
Navier-Stokes equations and a related solution to the boundary-layer equations, 
a sequence of calculations was made using a linearly retarded external velocity 
distribution identical to that in Howarth’s (1938) boundary-layer solution. This 
velocity distribution is given by ( 4 )  and has the property a2u,/8x2 = 0 which, 
in view of the preceding discussion, permits meaningful comparison between 
boundary-layer and Navier-Stokes solutions. In  this sequence, the portion of the 
Howarth solution between x* = 0.025 and x* = 0.075 was recomputed from the 
Navier-Stokes equations for five different Reynolds numbers, ranging from 
about 1 to 300 based on momentum thickness. As shown in table 1, the Reynolds 
number for these solutions (5-9) was varied by changing the viscosity and the 
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location of the outer-flow boundary. The thickness of the upstream Howarth 
profile was also adjusted accordingly. 

The distributions of wall shearing stress obtained from the Navier-Stokes 
equation are given in figure 12, plotted as a percentage difference from the highest 
Reynolds number case. An examination of figure 12 reveals that as the Reynolds 
number increases the shearing stress distributions appear to be converging to a 
single distribution valid for high Reynolds number. Since the boundary-layer 
equations are a limiting form of the Navier-Stokes equations for infinite Reynolds 

I I 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Distance along wall, z* = b,z/b, 

FIGURE 12. Effect of Reynolds number on wall shearing stress computed from Navier- 
Stokes equations with u, = b,-b,z. 0, solution 5, Re, = 150-300; 0, solution 6, 
Re, = 50-90; V, solution 7, Re, = 15-30; a, solution 8, Re, = 5-9; 0, solution 9, 
Re, = 1.5-3; 0 ,  Howarth solution. 

number, it  is not surprising that with increasing Reynolds number, the Navier- 
Stokes solutions appear to  approach the corresponding solution to the boundary- 
layer equations. If it is assumed that solution 5 with Re, between 150 and 300 
is very close to the limiting high-Reynolds-number solution, as figure 12 suggests, 
then the departure with decreasing Reynolds number from solution 5 is an in- 
dication of breakdown in the boundary-layer assumptions. Solution 6 with Re, 
between 50 and 90 is uniformly within 1 yo of solution 5, which suggests that, 
for the linearly retarded flow, the boundary-layer assumptions are very good 
for Re, above 50. It is not possible to attach more than qualitative significance 
to the actual percentages in figure 12 at  the lower Reynolds numbers because 
assumptions from boundary-layer theory were used as boundary conditions 
despite the fact that they are apparently no longer valid at the lower Reynolds 
numbers. It appears, however, that solution 7 with Re, between 15 and 30 has 
just begun to depart from boundary-layer behaviour. Another observation which 
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can be made from figure 12 is that, since the solution to the boundary-layer 
equations is a good approximation to the analytical solution of the Navier-Stokes 
equations with Re, in the range of 150-300, then the line representing the 
Howarth solution can be interpreted as a rough estimate of the discretization 
error in the numerical solution for Re, between 150 and 300. The error is about 
3 % ; relatively small considering the computations were made with an average 
of only 15 points in the boundary layer. This small error reflects the use of second- 
order diaerence approximations for all spatial derivatives in the numerical 
computation. 

To examine the effect of grid spacing on a solution, solution 7 having Re, 
between 15 and 30 was recalculated using double the number of grid points in 
the x-direction. The difference in wall shearing stress between the two solutions 
was uniformly less than 0.3 yo of the maximum value. Solution 2 was recomputed 
using 41 grid points in the y-direction instead of the original 31. The difference 
in wall shearing stress between these two solutions was uniformly less than 1.3 yo 
of the maximum value. These differences are regarded as acceptably small. 

Two checks were used to examine the validity of the downstream boundary 
conditions. First, solution 2 was recalculated with the downstream boundary 
moved to x* = 0.425, 5 grid points upstream of the original location. The dif- 
ference in wall shear between the two solutions was uniformly less than 0-5 yo 
of the maximum value. The difference was less than 0.2 % except at  the 5 points 
adjacent to the downstream boundary. A final comparison can be made using 
the four solutions for different external velocity distributions in figure 3. In 
the downstream portion of these solutions, the constant free-stream velocity is 
identical to that prescribed in the Blasius similarity solution of the boundary- 
layer equations for flow past a flat plate parallel to a uniform stream. It may be 
expected that, under the influence of this external velocity distribution, the 
numerical solutions will revert to a condition of local similarity and be com- 
parable to the Blasius solution. To make the comparison, it is only necessary 
to match the scale of the numerical solutions to that of the Blasius solution by 
means of the local displacement or momentum thickness. For example, the 
Blasius formula relating wall shearing stress to displacement thickness can be 
written 

Using (24) and values of u, and 6" from the numerical solutions, a Blasius value 
of wall shear was calculated and compared to that of the numerical solutions. 
In  figure 3, this comparison is shown at the downstream boundary for each 
solution, and the values are found to be in good agreement. In  figure 5 ,  the 
shape factors at  the downstream boundary are compared to the Blasius value 
of 2.59 and, again, the agreement is good in each case. Finally, the velocity 
profiles at the downstream boundary were compared to the Blasius profile. 
Distances normal to the wall in the numerical solutions were scaled in accordance 
with the Blasius similarity parameter. The comparison is shown in figure 13 
for solution 4, which contains a separation bubble. The agreement is good in this 
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case and was better for solutions 1-3. All the foregoing comparisons provide 
assurance that the treatment of downstream boundary conditions is adequate. 

A final comment is made regarding the computer time required to compute the 
numerical solutions. By way of example, the solution for the larger separation 
bubble reached steady state after 900 time steps and required 45 min of UNIVAC 
1108 computer time. The solutions which did not separate required about 250 
time steps and 13 min of computer time. All of these solutions were computed 

5 1  

0 0.2 0.4 0.6 0.8 1 .o 
Velocity, UIU. 

F I G ~  13. Comparison of velocity profile a t  downstream boundary with Blasiue profile 
for solution 4 with separation bubble. A, solution 4; -, Blasius profile. 

using 1116 grid points. It is believed that the larger number of time steps re- 
quired for the separated case was caused by initial disturbances in the vorticity 
field which oscillated through several cycles before being damped out in the 
transient approach to steady state. These oscillations decayed faster in the un- 
separated solutions. It appears that the total computer time for a given solution 
could be reduced by smoothing the initial vorticity field to eliminate the dis- 
turbances which cause the oscillations. 

The author wishes to express his appreciation to Henry McDonald for 
numerous stimulating discussions and helpful comments. 
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